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Retinoblastoma: the disease, gene and protein provide
critical leads to understand cancer

David DiCiommo a,e,g, Brenda L. Gallie a,b,c,e, f and Rod Bremner c,d,g,∗

Retinoblastoma has contributed much to the understanding
of cancer. The protein product of the RB gene, pRB, is a
multifaceted regulator of transcription which controls the cell
cycle, differentiation and apoptosis in normal development
of specific tissues. Elucidating the mechanisms in which pRB
plays a critical role will enable novel therapies and strategies
for prevention, not only for retinoblastoma, but for cancer in
general.
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Introduction

Understanding the molecular basis of the very rare
childhood eye cancer, retinoblastoma (RB), has re-
vealed fundamental principles of cancer to an aston-
ishing degree. The disease teaches us that the protein
product of the RB gene, pRB, is essential in human
retinal development. In the absence of pRB, human
developing retina is at extreme risk of forming focal
tumors, while certain other tissues are at slightly el-
evated risk1 and yet other tissues show no elevation
in risk.2 However, pRB is a transcription factor that
functions at the core of developmental decisions in
cell division, differentiation and apoptosis in almost
all cell types. The retinoblastoma disease, gene and
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protein have all contributed greatly to the concept
that cancer can result from derangement of these de-
velopmental processes.

Knowing the RB mutation in the child with
retinoblastoma has already been shown to have a
beneficial impact on the quality and cost of health
care for these families.3 When we can understand
fully the reason for the exquisite tissue specificity
of induction of cancer in the absence of pRB, we
will uncover opportunities to treat more effectively
and prevent retinoblastoma. However, the additional
benefits of understanding the role of the RB gene,
pRB, and homologous and interacting genes and
proteins in normal cell division, differentiation and
apoptosis, will be the concepts and strategies to
address the broader issue of cancer in general.

Retinoblastoma: the disease

Retinoblastoma is a rare malignant tumor of the
developing retina with an incidence of 1 in 20 000
live births in all human races, and this incidence does
not vary with geography or level of industrialization.
There is no validated documentation of spontaneous
retinoblastoma in any other species. Since only 10%
of affected children have a family history to warn
of the child’s risk, most commonly the tumors are
only discovered when one or both eyes is so full
of tumor that the pupil appears white, showing a
‘cat’s eye’ appearance. Even at this stage the tumor
cells are most commonly contained within the eye
and cure is attainable with modern medical care
in more than 95% of children.4 Salvage of useful
vision is possible for moderate sized tumors with
radiation or chemotherapy and laser and cryotherapy,
and for small tumors with laser and cryotherapy. If
retinoblastoma extends outside the eye, mortality is
very high.
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Retinoblastoma: the gene

The first tumor suppressor gene

Hereditary retinoblastoma presents as a Mendelian
autosomal dominant trait, due to high penetrance
resulting from the nearly 100% risk of at least one
retinoblastoma forming in those with a ‘null’ RB
mutant allele. Despite no family history, most persons
with mutant germline RB alleles are easily and cer-
tainly identified by the presence of bilateral disease.
Alfred Knudson realized the implications of the long
known fact that individuals with hereditary bilateral
retinoblastoma were diagnosed at a younger age than
those children with unilateral, mostly non-heritable,
disease.5 Statistical analyses indicated that as few as
two mutational ‘hits’ were rate limiting for the devel-
opment of retinoblastoma tumors. The occurrence
of the first mutation (M1) in the germline and all
developing retinal cells gives retinoblastoma tumors
a ‘head start’ in hereditary cases (only M2 must arise
in a retinal cell), compared to non-hereditary tumors
where both M1 and M2 must arise in a single retinal
cell. That the gene predisposing to retinoblastoma
is a tumor suppressor gene, where M1 and M2 are
mutations in the two alleles of one gene that is reces-
sive at the cellular level, was suggested by Comings.6

The RB locus was mapped to chromosome 13q14 by
linkage studies7, 8 and deletion analysis.9 The proof
that the RB gene is a tumor suppressor gene was
the observation that the normal allele was often lost
(M2), and the mutant RB locus (M1) was duplicated
in many retinoblastoma tumors.10, 11 This loss of
heterozygosity (LOH) is evident in 60% of both
hereditary and non-hereditary RB tumors, manifest
by such non-disjunction and duplication of the whole
mutant chromosome, or mitotic recombination.12

Dryja et al.13 located a molecular clone at the
RB gene locus that was totally deleted from one
retinoblastoma tumor. This clone was used to iso-
late a cDNA that showed sequence conservation
among different species.14 Internal mutations in
the gene in retinoblastoma tumors and patients
confirmed the identity of the RB gene.15 The normal
allele provides the required functions of RB in the
constitutional cells, including the non-malignant
cells of the retina, of persons with germline RB
gene mutations. The process of LOH is probably
occurring in all tissues, yet only in specific tissues is
malignancy the consequence of loss of pRB function.
The contrast between widespread expression of RB

and tissue-specific tumorigenicity could be due either
to compensation by other pRB-related proteins,16

or efficient clearance of certain RB−/− cell types by
apoptosis.17–19

Loss of pRB is insufficient for development of
retinoblastoma

The ‘two-hit’ model for retinoblastoma correctly
indicated that at least two events occur before the
child shows a tumor. Much evidence indicates that
those two events, which result in loss of pRB from
a developing retinal cell, are insufficient for ma-
lignancy. First, the benign expression of RB gene
mutation is a ‘retinoma’, a non-malignant precur-
sor of retinoblastoma.20 These retinal masses are
distinctive and do not change through adult life,
but are susceptible to progression to full malignant
retinoblastoma.21 Retinoma may be very common,
but is not usually recognized in an eye in disarray
with a very large retinoblastoma.22 Second, almost
all retinoblastomas show some degree of genomic
instability involving chromosomal regions other than
the RB locus on chromosome 13.23, 24 One specific
chromosomal rearrangement, an isochromosome
of 6p, i(6p), is evident in 60% of retinoblastoma
tumors in cytogenetics studies.25, 26 The i(6p) results
in low-level genomic amplification of chromosome
6p, and both chromosome 6 normal alleles are still
present.27 Chromosome-6-specific fluorescent in situ
hybridization suggests that retinoblastoma without
i(6p) also may have amplification of regions of 6p,
setting the stage to define the locus and genes on 6p
that are important for retinoblastoma formation.28

Low-penetrance retinoblastoma

In some families a ‘low-penetrance’ (lp) RB al-
lele results in retinoblastoma tumors in less than
50% of predisposed eyes. The vast majority of
high-penetrance mutations are ‘null’ alleles, which
destabilize RB mRNA, presumably due to prema-
ture truncation of translation, so that no pRB is
detectable.

The lp phenotype can result from several different
types of RB alleles.29 First, germline deletion of
the whole RB gene often results in unilateral or lp
retinoblastoma, presumably because an unknown
adjacent critical gene is also deleted, without which
the RB−/− cell cannot survive. Only cells in which
M2 is a different intragenic RB mutation on an allele
with the adjacent critical gene still intact can survive
to form retinoblastoma. Second, some mutations
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Figure 1. Low-penetrance (lp) RB mutations cause only
30% of the numbers of tumors as do high-penetrance, null
alleles. In the depicted model, a normal allele contributes
10 units of pRB activity. Retinoblastoma tumor occurs when
less than 8 units of activity are present. Therefore, LOH for
a 4-unit lp allele would not initiate a tumor. Persons with
such an allele would only develop tumors when M2 is a
separate allele with less than 4 units of activity.

reduce expression of wild type pRB by targeting
the promoter or splice sites.30–32 Third, in-frame
mutations result in a stable pRB with some aberrant
functions.33–41 In the latter two circumstances, LOH
may not result in a tumor because two partially defec-
tive lp alleles are thought to express sufficient wild
type activity to suppress tumorigenesis, so retinoblas-
toma arises only in cells where M2 is a separate
‘null’ mutation (Figure 1).30, 42 Alternatively, two
copies of an lp allele with some intact pRB functions
and other functions impaired or abolished, may
cause apoptosis by creating a signaling imbalance
in the developing retinal cell.37 Low-penetrance
mutations target different regions of pRB (Figure 2)
and provide an opportunity to determine which pRB
functions are important for tumor suppression in
vivo.37, 43

Retinoblastoma: the protein

The word ‘retinoblastoma’ is much better known now
for the protein, a cornerstone of the cell cycle, than it
is for the disease in children. Before the RB gene was
cloned in 1986,14 about 100 papers/year mentioned
‘retinoblastoma’ in the abstract. In 1999, 698 papers

Figure 2. pRB domains: sites for protein binding, phos-
phorylation and mutation. The numbers on top of the pRB
schematic indicate human residues. Low-penetrance (lp)
alleles are indicated: deletion mutants are represented by
boxes; arrows indicate approximate location of point muta-
tions. Numbering of CDK sites is based on Brown et al.;113

human pRB lacks site 5 found in mouse pRB, but includes
site 0, which mouse pRB lacks. Binding sites for cyclins and
transcription factors that affect division and differentiation
are indicated by boxes.

included ‘retinoblastoma’ in the abstract. There has
been no increase in the incidence of the disease, but
there is an explosion of knowledge of the pivotal role
of pRB in development, the cell cycle and cancer.

Although pRB is widely expressed in adult tissues,
its developmental expression pattern correlates with
differentiation.44 It is a nuclear transcription factor
that is regulated by phosphorylation through the cell
cycle, and that interacts with a myriad of proteins in
development and differentiation, whereby it plays a
critical role in the control of proliferation.

Structural domains

Human RB contains 27 exons within 180 kb of
genomic DNA that produces a 4.8 kb mRNA. Within
2.7 kb is encoded a protein (pRB) of 928 residues
(921 in mouse) (Figure 2). pRB can be divided
into three protease resistant, soluble, structural
domains comprised of the N-terminus, R motif, and
A/B ‘pocket’.45 The C-terminus degrades with mild
proteolysis and is not structurally well defined.

As mentioned above, most RB mutations abro-
gate pRB expression.40, 46 Of the few amino acid
substitutions and in-frame deletions that have
been observed in RB tumors or other tumors
(reviewed by Gallie,42 and Lohmann;47 also see
www.dlohmann.de/Rb/mutations.html), many affect
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the A/B pocket, pointing to the importance of
this domain for pRB function in the retina and
other tissues. This domain is necessary for biological
functions, including the regulation of growth and
differentiation, and biochemical activities, including
transcriptional regulation, and interaction with viral
and cellular proteins (reviewed by Kouzarides48).

The A and B domains require each other to form a
functional repressor motif.49 The reason for this was
made clear by the structural characterization of the
A/B pocket by X-ray crystallography: the A domain
appears to form a supportive scaffold for the B
domain which ensures proper folding and stability.50

Missense mutations affecting this A/B interface are
tumorigenic, suggesting that its structural integrity
is important for pRB function. Several cellular and
viral proteins bind the A/B pocket using a conserved
LxCxE motif which is shown by crystal structure to
bind directly to a highly conserved groove on the B
domain.

The C-terminal region is structurally undefined,
but is critical for growth suppression,51, 52 and
contains a nuclear localization signal53 and cyclin
binding motifs ([R/K]xL) that are important for
phosphorylation of pRB.54 The C-terminal region
appears to interact with and regulate the A/B pocket.
That the C-terminal region is not a well-folded
domain55 is consistent with its proposed role as a
flexible regulatory arm.56 The interaction of the
C-terminal region with the A/B pocket is strength-
ened by phosphorylation of C-terminal residues,
which disrupt interaction of the A/B pocket with
LxCxE proteins.56 The C-terminal region also binds
the oncoproteins c-Abl and MDM2.57 Deletion of
exons 24 and 25 within the pRB C-terminus causes
low-penetrance retinoblastoma.37 The protein ex-
pressed by this allele is defective in many, if not
all, C-terminal functions. Thus, the C-terminus is
an important region for pRB biological activity
even though, unlike the A/B pocket, it is unstruc-
tured.

The N-terminus is also not structurally well char-
acterized; nevertheless, it has key biological effects
because deletion mutants are found in human
retinoblastoma. The N-terminus, like the C-terminus,
also appears to bind the pocket.45 However, this
interaction may potentiate activity, since several
pocket functions are impaired by N-terminal muta-
tions.43, 51, 58 Thus, the N-terminus may promote an
active pRB conformational state. In addition to this
putative regulatory function, the N-terminus may
have other roles, since it binds several proteins.59–62

pRB and transcriptional repression

pRB executes its biological effects by both positively
and negatively regulating transcription. Positive gene
regulation is associated with differentiation. Tran-
scriptional repression, which is better understood, is
associated with inhibition of the cell cycle.

There may be many pRB-repressed genes, since
chromatin in RB−/− fibroblasts is more broadly
accessible to nucleases, implying derepression of
transcription, than in wild type cells.63 Eukaryotic
transcription is regulated by three RNA polymerases.
The pRB binds directly to components of Pol I64

and Pol III,65 inhibiting their induction of rRNA and
tRNA genes, respectively. It also inhibits Pol II, which
transcribes protein-encoding (mRNA) genes, In this
case, however, pRB does not bind to the holoenzyme.
Instead, it is recruited to a subset of Pol II-regulated
promoters by interacting with activators that bind
specific promoters. The major factors that carry out
this task are members of the E2F family.

E2F proteins activate genes that are required for
DNA synthesis (e.g. dihydrofolate reductase; DHFR)
and positive regulation of the cell cycle (e.g. cyclin
E) (reviewed by Dyson66). E2F proteins perform this
function as part of a heterodimeric complex with the
related DP family of molecules (DP1–3). E2F activates
transcription by recruiting general transcription fac-
tors such as TBP and TFIIH,67, 68 and/or by tethering
the histone acetylase CBP to promoters.69, 70

Five of the six known E2F family members have a
pRB family binding motif embedded in a C-terminal
transactivation domain. When bound to this motif,
pRB represses transcription by a variety of mecha-
nisms (Figure 3). First, pRB prevents E2F interacting
with factors like TBP.68, 71 This simple competitive
effect on an activation domain is termed ‘quenching’
[Figure 3(a)]. Second, once tethered to a promoter
by E2F, pRB can simultaneously bind the activation
domain of another activator [Figure 3(b)]. In this
way, pRB quenches two activators at the same time.72

Third, the E2F/pRB complex can also inhibit other
activators even though they are not pRB-binding
targets. This type of ‘direct’ or ‘active’ repression is
mediated by pRB (not E2F), since a GAL4-RB fusion
protein efficiently inhibits promoters bearing GAL4
binding sites.73–75 It may be that pRB carries out
this function by recruiting one or more of several
corepressors [Figure 3(c)].76–81

Although mutation of E2F sites in some promoters
reduces activity during the switch from quiescence to
G1, the opposite is true in many cases (reviewed by
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Figure 3. Models of transcriptional repression by pRB.
Curved arrows indicate the positive effect of activators. The
L-shaped arrow indicates the transcription start site. Curved
lines ending in a bar indicate repression. (a) pRB binds the
E2F activation domain, quenching its activity. (b) pRB binds
both the activation domains of E2F and another activator
(‘A’), quenching their activity. (c) pRB represses activators
it cannot bind (‘B’) by recruiting corepressors, such as
HDAC. HDAC uses an LxCxE motif to bind a groove on the
pRB pocket that is surrounded by positively charged lysine
residues (+).

Dyson66), suggesting that the repressor function of
the E2F/pRB complex has a major biological role.
Loss of repression may explain the surprising finding
that E2F-1−/− mice develop tumors,82 although
there are other explanations as well (reviewed by
Weinberg83 and Dyson66). Thus, although E2F can
function as an oncogene, it is also a tissue-specific
tumor suppressor.82, 84

Many of the corepressors that facilitate active
repression by pRB are either enzymes that modify
chromatin,76–78, 85 are part of complexes that modify
chromatin,81, 86–91 or are homologous to other
factors that modify chromatin.79, 92 For example,
pRB binds histone deacetylases (HDACs), which
remove acetyl groups from lysine residues in the
N-terminal tail of histones. The resultant increase in
positive charge is thought to enhance histone–DNA
interaction, and promote a less accessible chromatin
configuration.76–78, 93 A different type of pRB-binding
chromatin-modifying enzyme is BRG1.94 BRG1 and
its close relative BRM represent mammalian ver-
sions of the ATPases that drive the multiprotein
yeast SWI/SNF chromatin remodeling complex.
BRG1/BRM enhance the ability of pRB to repress
certain E2F targets, but the mechanism used is
uncertain.95–97 Intriguingly, interaction of pRB with

BRGI/BRM can also stimulate certain activators,98

consistent with the involvement of yeast SWI/SNF in
both gene induction and repression.99 This bivalent
activity is common among transcriptional regula-
tors, underscoring the important idea that gene
regulation by pRB is highly context dependent.

We see that pRB uses a complex variety of mecha-
nisms and proteins to inhibit transcription. A major
challenge for the future is to determine when, and
at which promoters, each of these alternatives is
exploited.

pRB and the cell cycle

The cell cycle consists of DNA synthesis (S phase)
and mitosis (M phase) separated by two gap intervals,
G1 and G2 (Figure 4). When they are not cycling,
cells are in a quiescent phase, G0, and extra- and
intracellular signals are required to re-enter the
cell cycle. Serum-starved cells in G0 will enter G1
upon growth factor stimulation, and will return to
G0 if mitogens are removed prior to a point in
late G1. Beyond this ‘restriction point’ (R) cells
traverse through S, G2 and M, and will not stop
even if serum is removed.100 Importantly, many of the
extracellular and intracellular signals that regulate
passage through R converge on the pRB pathway.101

The regulation of pRB is by phosphorylation. The
protein contains 16 CDK recognition motifs (S/TP)
for phosphorylation, seven of which are located in
the C-terminus (Figure 2). Hypophosphorylated pRB
binds target proteins and arrests cells in G1. This
block is relieved by a crescendo of CDK-mediated
phosphorylation that begins as cells in G1 approach
R, and is abruptly reversed at the end of M phase
(Figure 4, reviewed by Mittnacht102).

The major targets for hypophosphorylated pRB
are E2F and corepressors such as HDACs. E2F–
pRB corepressor complexes maintain the silence of
genes that are required for progression through R,
such as cyclin E. To pass this checkpoint, these
repressor complexes are disrupted in two stages by
the sequential action of cyclin D- and cyclin E-
activated CDKs (Figure 4).

As cells exit G0, cyclin D levels rise causing acti-
vation of CDK4/6 and phosphorylation of multiple
C-terminal sites on pRB.103–106 Ser 795 (site 12 in
Figure 2) is the first site to be phosphorylated,105

and is critical for inactivating growth suppression by
pRB.104 The C-terminal region of pRB contains a
series of (R/K)xL cyclin docking motifs (Figure 2).54

The D and E cyclins also contain LxCxE motifs,

259



D. DiCiommo et al.

Figure 4. (a) The expression pattern of cyclins D, E, A
and B, in relation to the increase in pRB phosphorylation
that occurs as the cell cycle progresses. (b) The sequential
effect of D-cdk4 and E-cdk2 on interaction of pRB with
corepressors and E2F. First, D-cdk4/6 phosphorylates the
pRB C-terminus, which interacts with the lysine patch in
the B domain of the pocket, dislodging LxCxE corepressors
such as HDAC. pRB–HDAC-regulated promoters, such
as cyclin E, are induced. The pRB–BRG1 interaction
is unaffected, so promoters regulated by this complex
(possibly cyclin A—but see text), remain silent. Next, E-
CDK2 phosphorylates S567 in the A domain of the pocket.
This event disrupts the intramolecular interaction between
the A and B domains, as well as binding to E2F and
BRG1. Now both pRB–HDAC- and pRB–BRG1-repressed
promoters are active.

which could theoretically mediate binding to the
pRB pocket.107, 108 However, the LxCxE motif is not
essential for D1 activity in vivo.104, 109

Following D-CDK4/6 phosphorylation, the increase
in negative charge promotes an intramolecular in-
teraction between the C-terminus and a series of
positively charged lysine residues (the ‘lysine patch’)
that surround the LxCxE binding groove in the
B domain of the pocket.56 Associated LxCxE pro-
teins, such as HDACs, are dislodged,56 but E2F and
BRG1, which do not use LxCxE motifs to bind pRB,
continue to interact with the tumor suppressor.97

Phosphorylation of specific C-terminal residues (sites
14 and 15, Figure 2) is also required to disrupt
interaction of pRB with SV40 large T, also an LxCxE
protein.110 Removing HDACs is thought to relieve
active repression of certain target genes, such as
cyclin E. In agreement with this, cyclin E expression
can be induced by treating cells with trichostatin A
(TSA), an HDAC inhibitor.97 Chromatin immuno-
precipitation studies, and expression studies with

RB−/− fibroblasts also suggest that cyclin E is a bona
fide pRB target.111, 112 Genes that are required later
in S phase, such as cyclin A, remain silent, possibly
due to the action of pRB–BRG1 (Figure 4).97

The D-CDK4/6-induced rise in cyclin E levels
activates CDK2 and triggers the second step in the
pathway, as E-CDK2 phosphorylates a serine located
near the end of domain A in the pocket (Ser 567,
site 7 in Figure 2). This modification disrupts the
intramolecular interaction between the A and B
domains of the pocket, and dislodges pRB from
both E2F and BRG1 (Figure 4).56, 97 Brown et al.113

showed that repression of E2F by pRB requires
the accumulation of phosphorylation on multiple
CDK sites, which is consistent with the idea that
phosphorylation of site 7 by E-CDK2 is preceded by
modification of many C-terminal sites by D-CDK4/6.
Furthermore, others have used specific inhibitors to
show that phosphorylation by D-CDK4/6 is actually
a prerequisite for subsequent phosphorylation by E-
CDK2.114, 115 Thus, D-CDK4/6 is required both for
the induction of cyclin E levels and for unmasking E-
CDK2 target sites on pRB.

Release of pRB from E2F and BRG1 negates all
mechanisms of repression. In response, cyclin E levels
rise higher, and genes that are repressed by BRG1,
such as cyclin A, are induced (Figure 4). The second
step releases the pRB checkpoint, and cells can
progress into S phase.

The simplicity of this model is appealing, but there
are a number of issues that are not yet addressed. For
example, although over-expression studies suggest
that pRB–BRG1 regulates cyclin A,97 DNA binding
studies show that E2F tethers p107, not pRB, to
this promoter.112 Knockout mouse studies also
suggest that cyclin A is regulated by p107/p130 and
not pRB.111 So what are the real in vivo targets of
pRB–BRG1? The model, as we have described it,
implies that E2F–pRB–HDAC and E2F–pRB–BRG1
regulate separate targets (cyclin E and A, respec-
tively; Figure 4). However, Zhang et al.97 showed
that prior to the action of E-CDK2, a trimolecular
HDAC–pRB–BRG1 complex can be detected. Does
this complex serve as a reservoir of pRB corepres-
sor pairs? Or does it actually bind to E2F intact,
forming a quaternary complex? Alternatively, does
HDAC–pRB–BRG1 target other promoters by an
E2F-independent mechanism? And what determines
which promotors recruit pRB–HDAC, pRB–BRG1,
or HDAC–pRB–BRG1? An additional layer of com-
plexity is suggested by data showing that different
promoters are differentially sensitive to repression
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by distinct pRB-associated corepressors.78, 80 Finally,
pRB and its associated proteins are not the only
factors that regulate cell cycle promoters,116 so
the insights gained have to be placed into a more
complex, but realistic, context.

Links between signaling pathways and pRB

Growth factors, cytokines and hormones tightly reg-
ulate cell division, differentiation and death. Several
pathways that connect receptors to intracellular
signaling cascades have been identified, but few links
have been made between these pathways and nuclear
factors. Mitogenic activation via tyrosine kinase
receptors, estrogen receptors and G protein-coupled
thyrotropin receptors is blocked by the CDK4/6 in-
hibitor p16 or by anti-cycD1 antibodies,117 suggesting
that all these pathways must inhibit pRB to induce di-
vision. In addition, TGFβ inhibits cell growth through
pRB by decreasing CDK4 levels,118, 119 or by increas-
ing the levels or activity of CDK inhibitors.120–124

Finally, pRB is required to inhibit proliferation by
blocking ras activity, and this is linked to cyclin D1
expression.125 An antagonistic relationship between
ras and pRB is conserved in worms.126

A more direct and CDK-independent link between
signaling pathways and pRB is suggested by the
finding that Raf-1 binds pRB.127 The proteins are
not associated in G0, but interact 30 min after
serum stimulation. Raf-1 phosphorylates pRB in vitro,
and both kinase activity and interaction with pRB
are required for reversal of E2F repression.127 Raf-
1 reverses the suppression of colony formation in
Saos2 cells by pRB, and this also requires direct
interaction. In the latter work the p38 kinase did
not co-immunoprecipitate with pRB, but in a later
study Fas-induced p38 was shown to phosphorylate
and inhibit pRB.128

pRB, differentiation, immunity, and apoptosis

A wide range of differentiating and differentiated
cell types express pRB during development.44, 129

Furthermore, studies with knockout mice and/or
tissue culture systems have implicated pRB in the
differentiation of erythrocytes, monocytes, neurons,
lens fibers, skeletal muscle, adipocytes, keratinocytes,
and bone.17, 19, 43, 130–137

One major question is whether pRB stimulates
differentiation directly, or simply facilitates differen-
tiation by arresting division. Genetic or functional
inactivation of pRB in mice is accompanied by

excessive proliferation and apoptosis in many tis-
sues, consistent with a role for pRB in terminal
mitosis.17, 19, 130, 132–134, 138–140 Inactivation of E2F-1
rescues these defects in the lens and central nervous
system (CNS),141, 142 again suggesting that the main
function of pRB in these cell types is block of cell
division. Furthermore, in both cultured cortical
progenitor cells, and striatum-derived neural stem
cells, pRB absence slows cell cycle exit, but does
not affect the eventual proportion of neurons and
glia.143 Functional inactivation of the pRB family
by E1A in cortical neurons induces apoptosis.144

However, the pan-neuronal differentiation marker
Tα1 α-tubulin is induced normally, and E1A has no
effect on terminally differentiated cortical neurons.
These data suggest that pRB is required for terminal
mitosis, but not for the initiation or maintenance of
CNS differentiation.

In the peripheral nervous system,132, 141 skeletal
muscle145 and keratinocytes,146 pRB is important for
terminal mitosis, but also seems to have a direct
role in differentiation, since it binds and stimulates
the activity of transcription factors, such as MyoD
or c-Jun, that activate cell-specific differentiation
genes.131, 137, 147 In adipocytes, pRB may be required
exclusively for differentiation, but not for cell cycle
arrest. When fibroblasts are exposed to adipogenic
hormones, division stops independent of pRB, but
RB−/− cells fail to differentiate.135, 148

Since pRB has distinct roles in blocking division
and promoting differentiation, it may be possible
to separate these functions at the molecular level.
Indeed, Sellers et al.43 showed that some pRB mu-
tants that fail to bind E2F-1 retain differentiation
functions, such as induction of a bone marker in
Saos-2 osteosarcoma cells and potentiation of MyoD
activity.43 Further analysis of this type should help
clarify the molecular pRB activities required for
differentiation in different cell types.

In addition to its effects on cell division, differenti-
ation, and death, pRB also plays a part in regulating
the immune response. Major histocompatibility
complex (MHC) class II molecules are α and β chain
heterodimers that present processed antigens to
T-helper cells and activate the cell-mediated immune
response.149 MHC molecules are constitutively ex-
pressed on ‘antigen presenting cells’, including B
cells, macrophages, and dendritic cells. However,
expression can be induced in many cell types by
various stimuli, such as IFN-γ .150 RB−/− human
tumor lines, and RB−/− non-transformed mouse em-
bryonic fibroblasts are defective for IFN-γ induction
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of MHC molecules.151–153 Constitutive MHC class II
expression (e.g. in B cells) is pRB independent.154

MHC class II expression on neoplastic cells has been
used to engineer effective tumor vaccines (reviewed
by Ostrand-Rosenberg155). Inactivating RB may help
tumors evade MHC class II induction and subsequent
detection and elimination by T cells.

Apoptosis is one of the consequences of entry of
a cell into S phase unsupported by proliferation
signals and factors. Apoptosis is the common result
of loss of pRB or disregulation of E2F.156 RB−/−

mice die in utero from abnormal neurogenesis and
erythropoiesis.17–19 RB−/− mice show an increase in
apoptosis in certain neurons and hematopoietic cells,
lens, and early muscle precursors.134, 157 Dependent
on the developmental status or cell type, pRB can pro-
tect a cell from apoptosis by controlling S phase entry.

In certain tissues, E2F-1-induced apoptosis is p53
dependent and tumorigenesis occurs when the func-
tions of both pRB and p53 are compromised. Not sur-
prisingly, the three DNA tumor viruses, HPV, SV40
and adenovirus, have independently evolved mecha-
nisms to eliminate both pRB and p53 function.

The pRB pathway in cancer

In view of its important role in alleviating pRB
repression, it is not surprising that cyclin D is essential
for cell cycle progression in RB-positive cells. In
addition, in cells that lack pRB, blocking cyclin D
activity has no effect,158–160 suggesting that pRB is
the major target for D-CDK4/6. This conclusion
is strengthened by studies with the INK4 family
of CDK inhibitors, p15, p16, p18 and p19, that
specifically bind and block CDK4/6. All members of
the p16 family tested so far require pRB to block
cells at G1/S.161–164 These findings gave rise to the
idea of a ‘pRB pathway’ consisting of p16-related
CDK inhibitors, the D cyclins, CDK4/6, pRB and
E2F. Numerous mitogens act through cyclin D,117

underscoring the importance of the pRB pathway in
growth regulation.

The pRB pathway plays such an important role
in controlling proliferation that it is frequently
(and perhaps always) perturbed in human tumors.
Although the developing retina is at nearly 100%
risk of forming retinoblastoma when both RB alleles
become mutated, only a few other types of tumors,
such as sarcoma and melanoma, are also initiated by
loss of pRB.1, 2 However, in many other tumors, pRB
is commonly inactivated directly by mutation,165 by

viral oncoprotein, or by alteration of other proteins
in the pathway of pRB regulation.

The tumor viruses, human papilloma virus (HPV),
adenovirus (E1a), and simian virus 40 large T antigen
(Tag), induce quiescent cells to enter and progress
through the cell cycle. E7, E1a, and Tag contain the
LxCxE motif, required for viral transformation, which
allows them to bind the pRB pocket (Figure 2). This
action pushes cells past R in late G1 into S phase
(Figure 4).166 E1a and Tag inhibit differentiation
even in some terminally differentiated cells.167, 168

In most carcinomas of the cervix, pRB is intact but
functionally inactivated by HPV E7 protein, which
uses an LxCxE motif to bind the A/B pocket of
pRB.169 E7 protein from high-risk HPV strains 16 and
18 disrupts the pRB/E2F complex more efficiently
than low-risk strains.170

In other tumors, CDK inhibitors are inactivated,
while in others, cyclin and CDK levels are increased
by amplification and/or chromosomal translocation
(reviewed by Weinberg101). Since the major role for
the p16 family of CDK inhibitors and D-CDK4 is
to regulate pRB, one would predict that a specific
tumor caused by mutations in one component of the
RB pathway could also arise through alteration of
any other member of the pathway. However, this is
clearly not the case: RB mutations predominate in
retinoblastoma and small cell tumors of lung,165 and
pRB is inactivated by virus in cervical carcinoma,171

whereas p16 mutations are common in glioma and
melanoma (reviewed in Weinberg101). This suggests
that cell cycle regulation may differ in distinct cell
types. Alternatively, members of the pRB pathway
may have specific roles in regulating differentiation,
death, and/or immune surveillance, all of which
affect tumorigenicity. Thus, whether an oncogenic
mutation leads to uncontrolled proliferation or a
safer outcome (e.g. cell death) will depend on the
biological circuitry that the pRB pathway is connected
to in a particular cell. Some tumor suppressors may
also be redundant in certain tissues where their loss
has no effect. Redundancy may also explain species
differences. Thus, loss of RB is sufficient to cause
retinoblastoma in humans, but inactivation of both
p107 and pRB is required in rodents.16

Retinoblastoma and retinal development

The RB gene is expressed in all adult tissues, but
specific cell types initiate expression of RB at specific
developmental times.44 Preliminary studies indicate

262



Retinoblastoma

Figure 5. pRB expression coincides with the initiation
of terminal differentiation in the retina. When no pRB
is present (RB−/−) cell cycle exit fails and proliferation
continues, but is balanced by apoptosis, possibly forming
retinoma. Malignant retinoblastoma arises when additional
mutational events (M3) result in failure of apoptosis to
balance the abnormal proliferation.

that RB-expression in developing retina initiates
as the cells commit to differentiation (Figure 5),
but only in a limited subset of the retinal cells
is pRB detected, even in adult mammals.28 Cone
photoreceptors strongly express RB, while the rod
photoreceptors never express RB. In the peripheral
retina, the inner nuclear layer consists of mixed
horizontal, amacrine and bipolar cells, and contains
a mixture of RB-expressing and non-expressing cells.
In the macular region, the inner nuclear layer archi-
tecture indicates that bipolar cells do not express RB.
Thus, retinoblastoma tumors may arise from a subset
of retinal neurons that depend on RB expression
for terminal differentiation. This is consistent with
the expression in retinoblastoma tumors of cone
photoreceptor-specific transducins,172 but not rod
photoreceptor-specific transducins.

The CDK inhibitor protein, p27Kipl , which causes
activation of pRB to block cell cycle progression, is ex-
pressed in a pattern coincident with the onset of dif-
ferentiation of most retinal cell types.173 In vitro anal-
yses show that p27Kipl accumulation in retinal cells
correlates with cell cycle withdrawal and differentia-
tion, and when overexpressed, p27Kipl inhibits prolif-
eration of progenitor cells. The histogenesis of pho-
toreceptors and Müller glia is extended in the retina
of p27Kipl−/− mice, which develop an adult retinal
dysplasia due to the displacement of reactive Müller
glia into the layer of photoreceptor outer segments.

These data could mean that active pRB is required
to maintain the Müller cell differentiated state. Al-
though the cyclin-CDK binding domain on p27Kipl

was essential to promote Müller cell differentiation,
inhibition of kinase activity was not.173 Thus, p27Kipl

may have non-cell cycle related and pRB-independent
effects on retinal differentiation.

Absence of pRB from the developing retina results
in apoptosis at the time when terminal differentiation
would normally occur, shown by the partial rescue of
RB−/− mice.28, 134 Apoptosis in the absence of pRB in
developing retina was evident from the low propor-
tion of RB−/− cells in the retina of mice chimeric for
RB−/− cells.174 However, mice chimeric for double
knockout of RB and p107 (RB; p107−/−) developed
retinoblastoma-like tumors.16 Retinoblastoma can
form, but loss of pRB is insufficient for malignancy.
Human retinoblastoma express normal p107.175

Apoptosis plays a very important role in the de-
velopment and maintenance of homeostasis in the
retina. The exquisite architecture of the human
retina that permits accurate function relies exten-
sively on the elimination of extra cells. The specificity
of cancer initiation in human developing retina in
the absence of pRB may be dependent on the failure
of the normal process of retina-specific control of
cell numbers by apoptosis. The M3 event (or events)
that initiates retinoblastoma may be disruption of the
apoptosis pathway (Figure 5). The general process of
apoptosis is intact in retinoblastoma cells and many
human RB tumors contain wild type p53, but many
other components of the apoptotic pathway may be
involved.28, 176

Recent studies suggest an essential role for the
neurotrophins such as nerve growth factor (NGF)
in mediating retinal apoptosis.177 Neurotrophins
achieve their cellular effects through two types of
receptors. Endogenous NGF induces the death
of retinal neurons that express the neurotrophin
receptor p75(NTR),178 a member of the tumor
necrosis factor receptor family, while expression
of trkA receptors results in cell survival. Ligand
specificity, interacting factors,178 and members of the
apoptotic pathway downstream from the membrane
vary depending on cell types and other genetic
determinants.178

The potential roles of the apoptosis retinal pathway
in the initiation and progression of retinoblastoma
remain to be elucidated. It is possible that retinoma
represents a limited linear expansion of RB−/− reti-
nal cells due to cell cycle progression in the absence
of pRB, balanced by apoptosis, while retinoblastoma
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arises when apoptosis fails as a subsequent event (M3)
(Figure 5).28 In theory, understanding this process
could lead to improved treatment and even preven-
tion of new tumors in individuals predisposed to ma-
lignancy by RB gene mutations.
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