
ORIGINAL ARTICLE

A CDK2 activity signature predicts outcome in CDK2-low
cancers
SR McCurdy1,2, M Pacal1, M Ahmad1 and R Bremner1,2

The role of cyclin-dependent kinase 2 (CDK2) in cancer is controversial. A major hurdle is the availability of tools to easily assess its
activity across many samples. Here, we introduce a transcriptional signature to specifically track CDK2 activity. It responds to
genetic and chemical perturbations in the CDK-RB-E2F axis, correlates with mitotic rate in vitro and in vivo and reacts rapidly to
changes in CDK2 activity during cell cycle progression. We find that CDK2 activity is specifically elevated in human testes, mirroring
its critical function in mice, and report very distinct profiles across human cancers. Increased CDK2 activity decreases risk in colon
cancer, but elevates poor outcome two- to fivefold in specific tumors, including low grade glioma, kidney, thyroid, adrenocortical
and prostate cancer. These are typically ‘CDK2-low’ cancers, suggesting that above a certain threshold CDK2 promotes progression,
but further increases do not influence outcome. Multivariate analysis revealed that the CDK2 signature is the most important
predictive feature in these cancers versus dozens of other clinical parameters, such as tumor grade or mitotic index. Thus,
transcriptome data provides a novel, straightforward method to monitor CDK2 activity, implicates key roles for the kinase in a
subset of human tissues and tumors and enhances cancer risk prediction. The strategy used here for CDK2 could be applied to
other kinases that influence transcription.
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INTRODUCTION
The cyclin-dependent kinase (CDK) family regulates multiple
processes including cell cycle regulation, transcription, survival
and development.1 It includes 20 CDKs, 4 CLKs (Cdc2-like kinases),
5 CDKLs (CDK-like) and 429 Cyclins.2 CDK1/2/4/6 control cell
division through inhibitory and stimulatory phosphorylation of
targets such as the retinoblastoma protein (RB), which binds and
represses E2F transcription factors that regulate many genes
involved in cell cycle progression.3 Non-canonical CDKs like CDK7-9
regulate transcription. For example, CDK7 phosphorylates the
C-terminal domain (CTD) heptad repeats of RNA polymerase II,
driving RNA polymerase II from transcriptional pre-initiation to
initiation.4 CDK8 (which binds to Cyclin C) and CDK9 (which binds
to Cyclin T1/2) also phosphorylate the CTD repeat of RNA
polymerase II, but drive initiation as well as elongation. Similar
to CDK4, CDK8 is amplified in human cancer, although specifically
in colon.5,6 CDK2 also targets proteins linked to transcription,7–9

but the extent to which it regulates gene expression and whether
this could be used to track activity is unclear.
Although many CDKs have been linked to cancer,10,11 resolving

their role is hindered by the practical constraints of assessing
kinase activity in multiple contexts. The current gold standard is to
measure phosphorylation using a kinase assay or to immunoblot
for a phospho-site. For CDK2, Cyclin E S384 can be used, but this
marks Cyclin E for degradation and is only useful when Fbw7 is
inactivated.12,13 More efficient kinase assays remain costly,14 and
elegant live cell tracking systems cannot be applied on a broad
scale or to primary human tumors.15

The role of CDK2 in cancer is hotly debated,16–23 likely because
CDK2 dependency is context-specific, but also because different

assays to block activity can have distinct effects. For example,
knockdown/out assays free Cyclins and provide an opportunity for
compensation by other CDKs, whereas pharmaceutical inhibition
does not, and as dominant negative approaches do not displace
cyclins, overexpression may have non-physiological consequences.
Some studies indicate that CDK activity predicts outcome, although
the approaches are laborious.24–27 Genetic models of murine
retinoblastoma revealed that retinal cells only become tumor-
prone once CDK2 activity rises above a certain threshold.28 Whether
this concept applies to other cancers is unknown.
No study has systematically examined CDK2 activity across

multiple cell lines and clinical samples. CDK2 influences the cell
cycle, thus there have been considerable efforts to define tools
that accurately proxy cell cycle activity. Some include staining for
cell cycle markers (for example, PH3, KI67, PCNA), transfecting live
cell markers (for example, FUCCI),29 incorporating probes into DNA
(for example, EdU, 3H-thymidine) and identifying mitotic figures.
None is suitable for a meta-analysis across multiple studies and
contexts in a streamlined fashion. Here, we develop a new
methodology to examine CDK2 activity. We leveraged RNAi-
transcriptome studies to identify a signature, and validated the
signature in multiple contexts (Supplementary Figure 1). Applying
the signature to large datasets uncovered new insights in CDK2
biology and cancer prediction.

RESULTS
A CDK2 gene signature
To identify a CDK2 signature three CDK2 knockdown datasets
from three cell lines were mined: A375 melanoma (GSE31534),30
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IMR32 neuroblastoma (GSE16480)31 and MCF7 breast cancer cells
(GSE31912).30 To generate a signature with 10–250 genes, we
filtered differentially expressed genes with a z-score ⩽− 1.96 in at
least two two cell lines, which identified 208 genes (Figure 1a).
Strikingly, analysis of expression data in the Cancer Cell Line
Encyclopedia (CCLE)32 revealed that these genes correlate with
CDK2 gene expression across 41000 cell lines (Figure 1a). A total
of 10 000 random gene signatures of equal size were generated
and used to calculate the absolute correlation (ρ) between CDK2
expression and the expression of genes contained within a
signature. The query CDK2 signature had a significantly higher
median absolute correlation of 0.23 (z=− 38.025, P= 0) compared
with the random population (median = 0.07, interquartile range =
0.00827). To simplify analysis, only genes positively correlated to
CDK2 gene expression were used. There were also more induced
(142/208) genes, providing a more robust higher performance
signature than the fewer down-regulated genes (66/208). To
further enhance robustness, a correlational matrix was created

using expression of the 142-genes across 8411 patient samples
from The Cancer Genome Atlas (TCGA).33 TCGA is multi-
institutional effort to comprehensively examine cancer genomics
with matched clinical data. Leveraging this database, we detected
a striking correlation across this huge sample size, and refer to the
97 most highly correlated (Figure 1b; Supplementary Table 1) as
the ‘CDK2 signature’. One of the genes is CDK2 itself, indicating
the CDK2 mRNA correlates with CDK2 activity across thousands of
human samples.
We mined GeneMania (www.genemania.org, Toronto, ON,

Canada) for experimentally validated protein–protein interactions.
A total of 73/97 genes in the CDK2 signature formed a singular PPI
network around CDK1, CDK2, PLK1 and AURKB, hubs with the
highest connections/degree (Figure 2a). The genes were enriched
for gene sets relating to prophase/metaphase (Figure 2b),
suggesting that CDK2 induces genes to poise the cell for mitosis.
Indeed, several prophase/metaphase-specific RNAs are first
transcribed during S/G2, but only translated once the cell passes
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Figure 1. Identification of a CDK2 signature. (a) Microarray data was mined from three CDK2 knockdown studies: MCF7 (GSE31912), IMR32
(GSE16480) and A375 (GSE31534). Each dataset was quantile normalized and the log2 difference between CDK2 and control was converted to
z-scores. The list only contains genes that were significantly down-regulated in at least two studies. We performed a Spearman correlation
between the signature genes and CDK2 across 1037 cell lines in the CCLE and ordered the genes in descending order. Genes that are down-
or up-regulated on Cdk2 knockdown are positively or negatively correlated with CDK2, respectively. (b) Transcriptome data from over 8000
wild-type and tumor samples was mined from the TCGA. The data was filtered to contain only genes that are positively correlated to CDK2
gene expression from a. A correlational matrix was created and arranged using hierarchical clustering. The highest correlated cluster was
selected to be the 97-gene CDK2 signature (dotted box).
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a G2/M checkpoint.34 Thus, CDK2 appears to have a major role in
preparing the cell at a transcriptional level for mitosis.

CDK2 signature correlates to CDK2 activity in multiple settings
To quantify the CDK2 signature, we normalized gene expression
using z-scores across samples, which overcomes differences in

expression ranges, and exposes which genes are different than
the average of all the samples. If all the signature genes are higher
on average, then the signature scores is higher. To summarize into
a single metric, the median is taken of all signature gene z-scores
for a given sample (Supplementary Figure 2).
Next we assessed the relationship between the CDK2 signature

and the activity of E2F, a transcription factor family that cooperates

Degree

Figure 2. The CDK2 signature produces a highly interconnected protein network. (a) A force-directed protein–protein interaction graph
derived from the CDK2 signature genes identified in Figure 6. The size of each node correlates to its degree (# of connections). Each line
represents a reported physical protein–protein interaction between nodes. The thickness of each of these edges is proportional to the
amount of evidence supporting the interaction. (b) Functional (GO) annotation for the CDK2 signature with an overlap of greater than 25%.
Overlap indicates the fraction of genes in the CDK2 signature present in each gene set. The number with each bar indicates the total size of
the respective gene set. All gene sets included are significant (Po0.05).
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with CDK2 to regulate cell cycle progression. Of 130 E2F targets
mined from reference,35 only 19 were part of the CDK2 signature
(Figure 3a). In spite of this modest overlap, the common function of
E2f and CDK2 function in cell cycle regulation suggest that
expression of their targets may correlate. To test this notion, we
used the 130 E2F target gene set to generate an E2F signature, as we
did for CDK2 above, and found that there was a strong correlation
between the CDK2 and E2F signatures across 1037 cell lines in the
CCLE database (ρ=0.8721, Figure 3b). Thus the CDK2 signature
tracks with E2F activity in a huge number of cell lines derived from
multiple tissue types.
RB protein binds and represses E2F to block induction of genes,

such as Cyclins A and E that bind and activate CDK2. Thus next we
assessed whether the CDK2 signature responds as expected to
manipulating RB and E2F. In the developing murine retina, loss of
the Rb gene increases in Cdk2 activity, which is further enhanced
by removing the Rb relative p107 (Rbl1), and these effects are
blocked by deleting E2f1.28 To test whether the CDK2 signature is
Rb and/or E2f-dependent, we performed microarray on E15 retina
with different genetic dosages of Rb, the Rb family member p107
and E2f1, and then calculated the CDK2 signature score for each
of the samples. Progressive loss of Rb family members led
to incremental increases in the median CDK2 signature
(zWT=−0.0296, zRb− /− =0.4871, zRb− /−p107− /− =1.5859; Figure 3c)
and removing E2f1 decreased the signature in both Rb- and Rb/
p107 null retinas (Figure 3c). Finally, these observations were
recapitulated using an E2F signature (Figure 3c, right panel). Thus,
the CDK2 signature, like CDK2, is Rb-E2f-dependent. Notably,
analysis of copy number and mutation data from 462 cancer-
associated genes revealed enrichment of RB1 mutation in CDK2-
High cell lines (3.2-fold increase, P= 4.03e− 04; Supplementary
Figures 3A and B). Other significant mutations included amplifica-
tion of NOTCH4 (18.3-fold increase, P=7.11e−06), ERC1 (4.6-fold
increase, P=8.76e− 04) and MAPK1 (4.6-fold increase, P=8.76e−04;
(Supplementary Figure 3A). Whether these three genes and/or other
loci in their respective amplicons influence CDK2 will require
additional work, but irrespective, the RB1 link further validates the
signature.
To assess directly whether the signature proxies CDK2 activity

we generated microarray data from P8 wild-type, αCre;Rbf/f and
αCre;Rbf/f;p107−/− retina and compared it with prior data on CDK2
enzyme activity in these contexts.28 Spearman correlation analysis
revealed an excellent correlation (ρ= 0.9487, Figure 3d). To test
the drug responsiveness of the signature, gene expression data
was mined from a study using the pan-CDK inhibitor R547.36 The
signature identified dose-dependent decreases and increased
inhibition over time in two cancer cell lines, and in non-dividing
PBMCs the CDK2 signature was low, as expected (Figure 3e).
Next, we asked whether the signature captures cell cycle

dynamics. Previously, HeLa cells were synchronized using either
thymidine-nocodazole block (TN) or double thymidine block (TT),
and every 1–2 h RNA was collected for microarray analysis.37

Strikingly, the CDK2 signature score rose during S–G2 and
plummeted at the M–G1 boundary (Figure 3f), exactly as reported
using a live cell probe for CDK2 activity.15 This was observed in
multiple cell cycles, clones and synchronization methods, thus the
CDK2 signature rapidly proxies cell cycle events.
In summary, the CDK2 signature mimics enzyme activity

following genetic or pharmaceutical perturbations, in vitro and
in vivo, and in the rapidly changing context of cell cycle
progression. It is thus a robust tool to track CDK2 activity in
multiple settings.

Specificity of the CDK2 signature versus other CDK signatures
CDK2 is functionally redundant with CDK1, but mainly binds Cyclin
A and E when CDK2 is deleted, rather than in a normal setting.38,39

The CDK2 signature was conceived using acute knockdown rather

than knockout data, and was further honed using correlation
analysis across thousands of cell lines and tissue/tumor samples
(Figure 1). To examine whether this approach captures specificity
we used microarray data from knockdown studies of CDK1 (A375
and MCF7),30 CDK4 (A375 and MCF7)30 and/or CDK8 (HT-29 colon
cancer cells, HCT116 colon cancer cells and HeLaS3 cervical cancer
cells).40–42 The 97-gene CDK2 signature was generated using a
cutoff z-score of ⩽− 1.96 in at least two cell lines, but this yielded
too few genes for other CDKs, which risks skewing subsequent
analysis of samples where one or a few genes were missing. Thus,
to generate CDK1/4/8 signatures with 410 genes, we filtered
genes with a z-score of ⩽− 1.5 in at least two cell lines. There was
no overlap between any CDK signature genes, providing initial
evidence for specificity (Figure 4a, bottom Venn Diagram;
Supplementary Table 1 and 2). Although 76% of CDK2 signature
genes formed a protein–protein interactions network consisting
mainly of M-phase functional annotations (Figure 2), genes
reduced by CDK1, CDK4 or CDK8 knockdown formed little-to-no
protein–protein interaction networks (Supplementary Figure 4),
and the affected genes were linked to various processes, with only
a few directly connected to cell cycle regulation (Supplementary
Table 3). Thus, the transcriptional responses to acute CDK depletion
are distinct.
To directly examine CDK signature specificity, we assessed the

response to pharmaceutical inhibitors with distinct target profiles.
A recent study surveyed 178 kinase inhibitors at 0.5 μM against 300
kinases using a radioactive kinase assay.43 Roscovitine (aka
CYC202) potently inhibited CDK2-Cyclin E/A (76–80% inhibition),
but not CDK1-Cyclin A/B1, or CDK4-Cyclin D1/D3 (3–18%
inhibition; Supplementary Figures 5 and 6). In line with these
data, we found that Roscovitine had a greater effect on the CDK2
versus CDK1 or CDK4 signatures using data from a study in LNCaP
cells (GSE20433)44 (Figure 4c). CDK8 activity was not assessed in
the kinase/Roscovitine study,43 but our data suggest this drug is
not a potent CDK8 inhibitor (P= 0.8254, Figure 4c). Unlike
Roscovitine, R547 inhibits many CDKs with high potency
(Supplementary Figure 6). In agreement, R547 had dose-
dependent effects on all CDK signatures in two cancer lines
(Figure 4d). A limit with this approach is that there are no CDK
inhibitors that are specific to CDK2 or, indeed, any single CDK
assessed in our study. However, in light of the extensive genetic
data above and cell cycle data below, the pharmaceutical analysis,
whereas insufficient on its own, adds weight to the notion that the
CDK2 signature tracks CDK2 activity.

CDK2 signature predicts cell cycle dynamics in tumors
To assess whether CDK2 activity predicts cell cycle activity in
tumors we first compared CDK2 signature scores for NCI60 cell
lines with matched population doubling times (dtp.nci.nih.gov/
docs/misc/common_files/cell_list.html),45 and found that the scores
predict doubling times (tCDK2LOW=38.4 h, n=15; tCDK2HIGH=26.1 h,
n=9; P=0.025;) (Figure 5a). To address in vivo relevance, we studied
clinical samples. Mitotic rate is a well-established indicator of
mortality in patients with adrenocortical carcinoma.46–49 When
transcriptome and mitotic data was mined from adrenocortical
tumors (GSE33371),50 the CDK2 signature score predicted mitotic
rate (ρ=0.6866, n=106; Figure 5b). We replicated this finding using
TCGA adrenocortical carcinoma datasets,51 and further observed that
CDK2 activity correlates with atypical mitotic figures (Supplementary
Figures 7A and B). Thus, the CDK2 signature predicts proliferative
index in many contexts, supporting a broad role for CDK2 in the
cancer cell cycle.

CDK2 activity in normal tissues
Next we applied the signature to define CDK2 activity in many
human tissues and tumors. To our knowledge, this is the first
systematic comparison of CDK2 activity across adult tissues.
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Most adult tissues assessed in the Genotype-Expression Project
data52 had low CDK2 activity, consistent with their mainly post-
mitotic state, and testes were the only normal tissue with a high
signature (Figure 6). CDK1, CDK4 and CDK8 signatures correlated
with CDK2 (ρCDK1 = 0.7120, ρCDK4 = 0.8136, ρCDK8 = 0.7680), but in

testes the CDK2 signature was at least one standard deviation
higher than the others (Figure 6, green line). One of the few
defects observed in Cdk2-deficient mice is testicular
atrophy.53,54 Our data now also implies a unique role for CDK2
in human testes.
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Figure 3. CDK2 signature is correlated to Cdk2 activity and is E2f1-dependent. (a) A Venn diagram showing the overlap between E2F target
genes35 and genes in the CDK2 signature. (b) A scatterplot of the CDK2 signature score versus E2F signature scores calculated from 1037 CCLE
cancer cell lines. (c) RNA samples were collected from murine retina of the indicated genotypes. Subsequently, microarray was performed and
the transcriptome data was used to calculate the CDK2 signature scores for each sample. (d) A scatterplot depicting the correlation between
the CDK2 signature score (n = 3, median z-score) and CDK2 kinase activity in P8 retina (n⩾ 3, but mean displayed only) with varying alterations
in the RB family (three models). CDK2 activity was mined from.28 Gray highlight around regression line indicates the 95% confidence intervals.
Each dot represents a replicate from the microarray. (e) Transcriptome data was mined from GSE1539636 in which cells were treated with
either vehicle (DMSO) or different dosages of the pan-CDK inhibitor R547. RNA was collected at different timepoints and microarray was
performed. The CDK2 signature scores were calculated across all samples and then organized by cell line. The R547 concentrations used are as
follows: for HCT116 cells (IC50= 0.1 μM, IC90= 0.2 μM and 3× IC90= 0.6 μM); for DU145 cells (IC50= 0.1 μM, IC90= 1.7 μM and 3× IC90= 5.1 μM); for
PBMCs (IC90= 0.2 μM, 3xIC90= 0.6 μM). PBMCs=human peripheral blood mononuclear cells. (f) Transcriptome data was mined from.37 HeLa
cells were synchronized using either thymidine-nocodazole block (TN) or double thymidine block (TT). Poly(a) RNA was collected at intervals
(every 1–2 h), reverse transcribed and hybridized to a custom microarray. The CDK2 signature scores were calculated across all conditions and
separated by blocking method. The number after each TT indicates the clone number (for example, biological repeats). The dotted lines
indicate mitosis and the gray bars indicate S-phase length.
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Figure 4. Specificity of different CDK signatures. (a) Microarray data was mined from multiple CDK knockdown studies to develop signatures
for CDK1, CDK4 and CDK8. Each dataset was normalized and the log2 median difference was calculated between each siCDK condition and
control. These differences were converted to z-scores. Only genes with a z-score 41.5 were included in the Venn Diagram. The brackets
indicate the signature gene set size. (b) Transcriptome data from a was re-mined and processed using other CDK signatures. Each respective
siRNA for each signature is shown along with controls. (c) Transcriptome data was mined from GSE2043344 in which LNCaP cells were treated
with either DMSO (0.1%) or CDK inhibitor roscovitine (10 μM) for 24 h after which the RNA was collected and sent for microarray. The signature
scores (y-axis) for CDK1, CDK2, CDK4 and CDK8 were calculated for all samples in the study. The results are summarized as a dot plot with the
crossbar indicating the median. Each dot represents a biological replicate (n= 2). (d) Transcriptome data was mined from GSE1539636 in which
cells were treated with either vehicle (DMSO) or different dosages of the pan-CDK inhibitor R547. RNA was collected after 24 h of treatment
and microarray was performed. The CDK signature scores were calculated across all samples and then organized by cell line (n⩾ 4).

p = 0.025

p = 0.199
Adrenocortical Carcinoma

ρ= 0.6866

Figure 5. CDK2 signature predicts cell cycle dynamics. (a) Doubling times were curated from NCI60 cell lines along with their microarray data
from GSE2003.45 The CDK2 signature scores were calculated for each cell line and divided into three bins based on percentile. P-values
indicate the pairwise Mann–Whitney Test with a false discovery rate correction for multiple testing. The data is summarized as boxplots.
(b) Microarray data was mined from GSE3337150 along with the mitotic rate. The CDK2 signature scores were calculated for all adrenocortical
cancer samples and correlated to mitotic rate using Spearman’s ρ (n = 33).
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CDK2 activity predicts outcome in a subset of cancers
To compare CDK2 activity globally across cancer we curated
RNAseq data from 47000 clinical tumor samples (TCGA) and
microarray data from 41000 cell lines (CCLE) using cutoffs at the
20th and 80th percentiles (Supplementary Figure 8). Consistent
with selection for the most robustly dividing cells in vitro there
were fairly minor differences in the distribution of CDK2-low/
medium/high cases across cancer cell lines. In stark contrast, many
primary tumors exhibited only medium or high but not low CDK2
activity (for example, cervical, colon), or only low or medium but
not high CDK2 activity (for example, prostate, thyroid (Figures 7b
and c; Supplementary Table 4). These data expose markedly
distinct CDK2 activity across different cancers.
Next, we employed TCGA data on recurrence-free survival (RFS)

or overall survival (OS) to assess whether CDK2 activity influences
risk. As opposed to the global CDK2 signature scores that were
used to compare across cancers, we recalculated tumor-specific
scores to derive hazard ratios (HRs) for each tumor type. High
versus low activity was compared with cutoffs at the 66th and
33rd percentile, respectively. Supplementary Figure 9 shows KM
curves for each tumor, significant HRs are summarized to the right
of the graph in Figure 7b, the heat map in Figure 7c indicates
median and gene-specific HRs, and Supplementary Table 5
provides numerical details.
High tumor-specific CDK2 activity predicted improved RFS in

patients with colon cancer, which agrees with prior work.55

However, among the 26 other cancers, high tumor-specific CDK2
activity predicted poorer OS and/or RFS in 11 cancer types. In
general, individual signature genes generated HRs similar to the
median of the entire signature (Figure 7c), consistent with their
highly correlated expression (Figure 1b). Cases where CDK2

activity predicted OS but not RFS or vice versa reflects limited
samples in some cases.
Figure 7b places side by side global CDK2 activity (bar graph)

and the risk analysis (to the right of the bar graph). Intriguingly,
the CDK2 signature predicted poor outcome in 11/13 cancers that
had CDK2-low cases, but in 0/14 tumors with no or very few such
cases. These data imply that low CDK2 activity is protective, but
medium or high activity confers similar increased risk. Other
pieces of data also support the notion of a two-state model for the
link between CDK2 and cancer progression (see ‘Discussion’
section).

CDK2 activity outperforms other predictors
Next, we compared the importance of CDK2 activity relative to
other predictive parameters. In adrenocortical cancer, the CDK2
signature generated greater HRs than a few other selected clinical
features (Figure 8a), suggesting it might be a better predictive
tool. As a multivariate strategy to compare predictors, we
implemented random forests. This unbiased approach is an
ensemble machine learning algorithm, which utilizes predictive
variables to generate hundreds of randomized decision trees and
averages the results to create a model of lower variance.56

Random forests also estimate variable importance by determining
how often a feature appears at the top of decision trees across the
forest. Of multiple clinical characteristics recorded by TCGA for
four cancers with low CDK2 cases, the CDK2 signature was the
feature with the highest (adrenocortical carcinoma OS, thyroid
cancer RFS) or second highest importance (kidney renal papillary
cell carcinoma OS, low grade glioma OS/RFS; Figure 8b;
Supplementary Table 6). As a control we analyzed melanoma, in
which the CDK signature is not predictive (HR = 1.1), and indeed

Figure 6. Distribution of CDK2 signature across multiple cell lines and clinical samples. Transcriptome data of 2921 normal human samples
were mined from Genotype-Tissue Expression Project (GTEx). All data was log2 transformed and normalized between samples. Subsequently,
the CDK signature scores were calculated for each sample. Since each tissue consists of multiple samples (ranging from 3 to 191), only the
median of each signature is depicted for a given tissue.
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Figure 7. High CDK2 signature predicts poor prognosis in patients in CDK2-Low tumors. (a) A total of41000 cancer cell lines (mined from the
CCLE) arranged by their CDK2 signature score. Dotted lines indicate the 20th and 80th percentile. A stacked bar plot is used to depict the
distribution of cell lines in with a high, medium or low CDK2 signature score by tissue type. (b) Same as a except using patient tumor samples
mined from the TCGA (n = 7746). Symbols to the right are based on KM curve analysis on patient outcomes (Supplementary Figure 9;
Supplementary Table 5): O=high tumor-specific CDK2 score significantly increases risk in overall survival. R=high tumor-specific CDK2 score
significantly increases recurrence. *=high tumor-specific CDK2 score significantly decreases risk of recurrence. Global refers to the CDK2
activity calculated relative to the entire TCGA dataset, whereas tumor-specific refers to CDK2 activity calculated using only that tumor type.
(c) Within each cancer, the normalized z-scores for each gene within the CDK2 signature was divided into three bins based on percentile.
Using a Cox proportional hazards regression, the hazard ratios were calculated between the high and low groups within each cancer type. The
median hazard ratio is also displayed for reference. The top 14 cancer types are shown with colored blocks indicating a significant difference
between high and low expressing groups within that cancer type (P⩽ 0.05).

Figure 8. CDK2 activity is an important predictor of patient outcomes compared with other clinical features in CDK2-Low tumors.
(a) Transcriptome data was mined from adrenocortical carcinoma clinical samples (TCGA) along with clinical features. The CDK2 signature
scores were calculated. Using the clinical information, the Kaplan–Meier curves were graphed stratifying by atypical mitotic figures (presence/
absence, left), mitotic rates (assessed by the presence/absence of at least five mitotic figures in 50 high powered fields (HPF, middle), or CDK2
signature scores (divided into thirds based on percentile, right). (b) Random forests was run on all patients with clinical information to
determine the importance of each feature towards its ability to predict outcomes in tumors where CDK2 activity predicted outcome: CDK2
activity is not prognostic in melanoma and was used as a control. ER: error rate. (c) To determine the minimum number of features, which
could predict survival outcomes in kidney renal papillary cell cancer data was split into a training set (60%) and test set (40%). Random forests
was performed on the training group to generate a model of given error and used to predict in the test set. This process was repeated by
sequentially eliminating least important features and graphing the response in out of bag error rate. The table below indicates the rank in
importance and the selection of each feature per iteration.
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random forests analysis ranked it 16th of 47 features (Figure 8b;
Supplementary Table 6). Surprisingly the CDK2 signature had a
much higher feature importance than indicators like mitotic index,
staging and resection status (Figure 8b; Supplementary Table 6).
Next, we utilized the kidney renal papillary cell cancer data to

create training and test sets and performed random forests on the

training group to generate a model of given error to predict in the
test set. The process was repeated and less important features
sequentially eliminated. Notably, 3 features, which included the
CDK2 signature, predicted outcome at least as reliably as all 38
features, and there was a large increase in error when pathologic
PN (stages based on the cancer nodes) was used alone versus it

Adrenocortical Cancer
OS HR: 4.77, n=77
ER: 16.47%

Kidney Renal Papillary Cancer
OS HR: 2.4, n=197
ER: 13.77%

Low Grade Glioma
RFS HR: 1.62, n=400
ER: 23.88%

Low Grade Glioma
OS HR: 1.82, n=400
ER: 16.92%

Thyroid Cancer
RFS HR: 2.04, n=486
ER: 32.66%

Melanoma Cancer
OS HR: 1.10, n=330
ER: 19.37%

CDK2 Sig

CDK2 Sig

CDK2 Sig

CDK2 Sig

CDK2 Sig

CDK2 Sig

Present
Absent

>5/50 HPF
≤5/50 HPF

High
Medium
Low

Pathologic
nodes (e.g. N1)

Tumor stage

Pathologic
mets(e.g. M1)

Lymphnodes
Examined

Age at
diagnosis

Tumor grade (e.g. II)

Residual
Tumor

Pathologic Stage
(e.g. T1)

Pharm. Tx
adjuvant

Rad. Tx
adjuvant

1st treatment
outcome

Mold/dust
allergy

New tumor event

New tumor event

Age at diagnosisStaging

Submitted tumor
dx days to

Last contact days to

Year of diagnosis

Feature

Pathologic PN 1 1 1 1 1 1

CDK2 Signature 2 2 2 3 4

Pathologic Mets 3 3 2 5

Tumor Stage 4 4 3

Lymphnodes Examined 5 2

All Features (38) >5

1 2 3 4 5 38 
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plus the CDK signature (Figure 8c). These results support an
important functional role for rising CDK2 activity in CDK2-low
tumors, and expose a novel, enhanced strategy to predict
outcome in these cancers.

DISCUSSION
A new tool to track CDK2 and predict cancer outcome
We report a 97-gene transcriptional signature that accurately
proxies CDK2 activity, providing a simple method to assess this
kinase in different settings and samples. It was derived by
coupling transcriptome data from CDK2 depletion studies coupled
with coexpression of hits across thousands of tumor samples
(Figure 1). The signature includes many functional nodes required
for M phase (Figure 2), which suggests that CDK2 prepares the cell
for mitosis. This potentially key role of CDK2 in setting up mitosis
has been largely overlooked, likely because CDK1 may compen-
sate for this role in CDK2-null animals. Multiple pieces of data
validate the signature. It responds in a dose-dependent fashion to
RB/E2F disruption or small molecule CDK inhibitors (Figure 3),
and shows specificity relative to other CDK signatures (Figure 4). It
correlates with cell cycle length, mitotic rate and rapidly tracks changes
in CDK2 activity during cell cycle progression (Figures 3 and 5). Indeed,
the signature showed the same undulating pattern as that
observed with a fusion protein that tracks CDK2 activity in live
cells, rising through S-phase and plummeting at the M/G1
boundary.15 This rapid transcriptional response to CDK2 is in line
with data showing that CDK2 phosphorylates RNAPII CTD7,8 and
that 44/180 CDK2-Cyclin A proteomic targets regulate mRNA
transcription and processing.9 The correlation between CDK2
activity and mitotic rate in tumors implies an important role for
this enzyme in cancer proliferation. We exposed unusually high
CDK2 activity in human testes, matching CDK2 function in
mice53,54 and markedly distinct CDK2 activity in different cancers
(Figures 6 and 7b). Intriguingly, high CDK2 activity was associated
with improved outcome in colon cancer, but worse outcome in
other cancers, all of which contain several CDK2-low tumors
(Figure 7b). Machine learning analysis revealed that the signature
is more important than numerous other clinical parameters in
identifying at-risk patients (Figure 8). Thus, rising CDK2 activity
may be oncogenic in CDK2-low tumors. The signature could be
applied to better predict when these cancers require aggressive
treatment.

CDK2 in cancer: ‘All or nothing’?
If the relationship between CDK2 activity and tumorigenesis was
linear or exponential, samples with progressively higher CDK2
activity should have increased tumor progression and worse
prognosis. Instead, the CDK2 signature could decipher risk in
tumors with a mix of low and medium activity, but not in those
with medium and high activity (Figure 7b). Thus, above a certain
threshold of CDK2 activity, there may be no further advantage to
the cancer cell, and indeed a disadvantage in colon cancer. Some
cancers may transition through the lower CDK2 state at early, possibly
benign periods of growth. In support of this ‘two-state’ hypothesis,
other studies find that only complete ablation of Cdk2 blocks
tumorigenesis, whereas heterozygous Cdk2 is insufficient.16,17,22,23

Moreover, a quantum increase in CDK2 activity correlates with the
transition from a tumor-resistant to tumor-prone state in Rb versus
Rb/p107 or Rb/p27 null retina, respectively.28

Technical advances towards understanding the kinome
To validate our signature, we focused principally on cell cycle
contexts because this is by far that most studied aspect of CDK2
function. Having extensively validated the signature, it could now
be deployed to track CDK2 activity in other contexts, such as

during DNA damage, degeneration, embryonic development and/
or drug treatment for cancer or other diseases. The process
employed here to study CDK2 could be leveraged to generate
other signatures, thus applying publically available transcriptome
data to assess the entire kinome. CDKs may be a special case
because many of the family members have direct roles in
transcription. Nevertheless, efforts to define and validate kinase
signatures may hold promise to uncover their relevance in cancer
development, and to generate new more powerful predictive
tools to guide treatment.

MATERIALS AND METHODS
CDK2 signature data mining, refinement and visualization
To develop a CDK2 signature, microarray data was downloaded from three
studies curated on Gene Expression Omnibus (GEO, www.ncbi.nlm.nih.
gov/geo/): GSE31534 (siRNA), GSE16480 (shRNA) and GSE31912 (siRNA).
Each of these studies used the Affymetrix Human Genome U133 Plus 2.0
Array platform (Affymetrix Inc., Santa Clara, CA, USA), minimizing the cross-
platform variability. Each dataset was background corrected using Robust
Multi-Array Average (RMA) algorithm,57 then quantile normalized to batch
correct (if necessary). Probes targeting the same gene were aggregated
using median. The difference between knockdown CDK2 samples and
Control (for example, siScrambled, baseline) was determined and then
centered/scaled using z-scores. The initial signature only included genes
that were significantly up-regulated or down-regulated in at least two of
the three studies (|z|⩾ 1.96). To test whether these genes are co-expressed,
mRNA expression data was downloaded from TCGA using Cancer
Browser33,58 and correlated to each gene in the signature using
Spearman’s ρ. Only co-expressed gene were selected for the CDK2
signature based on a highly correlated cluster determined by hierarchical
clustering. The CDK2 signature genes are summarized in Supplementary
Table 1. Level 3 RNAseq data with file names using the ‘*.rsem.genes.
normalized_results’ tag were downloaded from The Cancer Genome Atlas
(TCGA) via Cancer Browser (genome-cancer.ucsc.edu/proj/site/hgHeat-
map/). The data was then log2(x+1) transformed and quantile normalized
across 8411 samples. Only co-expressed genes were inputted to
the GeneMania App (Version: 3.3.4, 2014-08-12 core; http://genemania.
org/) in Cytoscape (3.2.0, San Diego, CA, USA) for PPI network analysis.

Signature score
Signature scores are used to approximate the activity or level of a
signature in a given sample. The score is created by first downloading gene
expression data and ensuring samples have appropriate background/
transformation for subsequent processing. For most studies mined, RMA
background correction was used with log2 transformation. In cases where
RMA normalized data was unavailable, quantile normalization was used.
After preprocessing, the gene expression scores were filtered based on an
input gene signature and converted to human homologs if necessary
using Homologene (NCBI, http://www.ncbi.nlm.nih.gov/homologene).
After scaling and centering the filtered list with z-scores, the gene
expression is summarized for a given sample using the median. For global
comparisons of CDK2 scores, patient samples or cell lines in the top fifth or
bottom fifth quantile were labeled as global signature high or signature
low, respectively (Figures 7a and b). However, for tumor-specific
comparisons, the top third was considered high and bottom third was
considered low. These cutoffs permit sufficient numbers for statistical
testing in the majority of cases. The methodology is graphically
summarized in Supplementary Figure 2.

Copy number/mutation enrichment analysis
To determine which mutations are enriched in high CDK2 signature cell
lines, 1037 cell lines from the CCLE32 were divided into thirds based on the
percentile of their CDK2 signature score. Next, the copy number and
mutation status of 462 oncogenes and tumor suppressors was down-
loaded from cBioPortal (www.cbioportal.org/public-portal/) and matched
to the signature high and signature low groups. Alterations were
summarized as MUT (exonic mutation), AMP (amplification) or HOMDEL
(homozygous deletion). The mutations analyzed were present in at least 20
cell lines in both the high signature and low signature groups with at least
a twofold change. A Fisher’s exact test was used to determine the
significance of pairwise comparisons between the groups. A 20% false
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discovery rate was set to correct for multiple testing (for example, fail to
reject null hypothesis when P⩽ 0.00222). Lollipop plots were generated
using MutationMapper (v1.0) via cBioPortal.59

Survival analysis in clinical samples
Clinical data and RNAseq V2 data was mined using TCGA’s pan-cancer
normalized data via Cancer Browser. The data was matched by TCGA
barcodes. The RNAseq data was quantile normalized first then the CDK2
signature score (median z-score) was calculated for each patient. The
survival data between the signature low and signature high was used to
calculate the hazard ratios for the OS and RFS across multiple tumors types
(n= 27) using a Cox proportional hazards regression model. The same
analysis was also performed at an individual gene level.

Mouse microarray
The RNA samples were collected using RNeasy Mini kit (Qiagen, Venlo,
Netherlands) from E15.5 and P8 murine retina from mixed C57BL/6×129SvJ
mice with deletions of Rb, p107 and/or E2f1. E15.5 samples were isolated
using laser capture microdissection. RNA quality was determined using
Agilent 2100 Bioanalyzer (TCAG, Toronto, ON, Canada). Only samples with a
RNA Integrity score (RIN) of 47 were used. Reverse transcription and
hybridization was performed by TCAG. P8 samples were hybridized to
Affymetrix Mouse Gene ST 2.0 array probes whereas E15.5 samples were
hybridized to Illumina Mouse WG6 (v1.1, San Diego, CA, USA). Probe intensity
scores were processed using RMA background correction and log2
transformation. Biological sample numbers were as follows: WT:3; Rb null:
2, Rb/p107 null: 1; Rb/E2f1 null: 1; Rb/p107/E2f1 triple null: 2.

Software and statistical analysis
Data was arranged and organized using R statistical programming
language and Microsoft Excel. All statistical tests were two-sided. To
determine the statistical significance, R was used graph and test the
significance of data from Kaplan–Meier curves, RT–PCR analysis, mined
studies and in vitro assays. Multiple testing was corrected for using either
Bonferroni’s correction or false discovery rate. Heatmaps were generated
using Microsoft Excel. R package ‘survival’ was used to estimate hazard
ratios and P-values of survival data. Most graphs were created using
‘ggplot2’ graphics package in R. Random forests was performed using the
‘randomForestSRC’ package. Code is available at https://github.com/
seanmccurdy/medical_research.

Significance
CDK2 targets proteins that affect cell cycle, transcription and cancer.
Measuring its activity across multiple samples could reveal new roles, yet
current methods are expensive, cumbersome and/or are not applicable to
large sample sizes. Leveraging transcriptome data we show that a 97-gene
set accurately and rapidly tracks CDK2 activity in multiple settings. We
reveal new insight into CDK2 activity in human tissues and thousands of
tumors. The signature exposes remarkably high CDK2 activity in human
testes, and a unique set of ‘CDK2-low’ tumors where switching to higher
activity predicts poor outcome. Our work provides an enhanced strategy to
analyze CDK2 and predict cancer risk, and the method could be applied to
study other enzymes that rapidly affect transcription.
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